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Abstract We apply the continuum equations of a ki-
netic theory to predict the features of uniform, steady,

inclined flows of identical, frictional, inelastic spheres

over a rigid, bumpy base between vertical, frictional

side walls. Numerical solutions of these equations over

a range of mass flow rates exhibit features seen in phys-
ical experiments and numerical solutions in the absence

of side walls. For the densest flows, we employ a phe-

nomenological extension of kinetic theory that involves

a length scale associated with particle correlations.When
a dense flow is thick enough, an algebraic balance be-

tween the production and dissipation of fluctuation en-

ergy reproduces the relation between mass flow rate

and mass hold-up obtained when solving the boundary-

value problem of the extended theory.

Keywords Kinetic theory · Inclined flow · Inelastic

spheres

1 Introduction

Over the past twenty-five years, numerous kinetic theo-

ries have been derived for flows of identical, hard, spher-

ical particles that interact through inelastic collisions at
moderate volume fractions - typically less than 0.49, at

which a transformation to an ordered phase is first pos-

sible [1]. These theories are of two types: those linear

in the first spatial gradients [2–4] and those of higher
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order [5–7]. Theories for frictional spheres involve addi-
tional balance equations associated with the rotational

degrees of freedom [8,9]. Indications are that kinetic

theories for flows at higher volume fractions must in-

volve more complicated distributions of relative velocity

than are usually employed [10,11]; while phenomenolog-
ical corrections to existing kinetic theories have been

introduced to account for frictional yield [12,?], cor-

related interactions [13,14] or both [15]. Kinetic theo-

ries linear in the first spatial gradients have had some
success in describing moderately dense, inclined flows

observed in physical experiments [12,16–18]. Similarly,

the phenomenological extensions provide good descrip-

tions of dense flows, provided that the coefficients they

employ are appropriately adjusted [19].
Previously [19], we illustrated the predictive capabil-

ity of the kinetic theory developed by Garzo and Dufty

[3] for identical, frictionless, inelastic spheres in steady,

uniform, inclined flows between vertical, flat, frictional
side walls over erodible particle beds. Here, we consider

such flows over rigid, bumpy beds. As before, for vol-

ume fractions roughly greater than 0.49, we extended

the theory of Garzo and Dufty by introducing an ad-

ditional length scale into the expression for the rate of
collisional dissipation. This is identified with the length

of chains of particles that are experiencing multiple or

correlated collisions. It is determined by a balance be-

tween the orienting influence of the flow and the ran-
domizing influence of the collisions.

Numerical solutions for the dense flows that incorpo-

rate this extension, and a simpler algebraic theory that

is based on it, reproduce the relation between mass

flow rate and mass hold-up measured in physical ex-
periments. The numerical solutions show that, as the

mass hold-up is increased, there are multiple solutions

for the same mass flow rate. This is also seen in phys-
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ical experiments over a flat, frictional base [12] and in

numerical solutions for inclined flows in the absence of

side walls [20].

2 Kinetic Theory

2.1 Balance equations

We consider identical spheres with a mass m and a di-
ameter d. The mean number of particles per unit vol-

ume is n, the mass density, ρ, is the product of m and

n, the mean velocity u is the average over the parti-

cle velocity c using the single particle velocity distribu-

tion function, u ≡ 〈c〉; the fluctuation velocity is, then,
C ≡ c − u, and a measure of the strength of the ve-

locity fluctuations, the granular temperature, is defined

by T ≡ 〈C ·C〉 /3.

The mass density, the mean velocity, and the granular
temperature are determined as solutions to the balance

of mass and linear momentum that have their usual

forms [2], and the balance of fluctuation energy,

(3/2)ρṪ = tr (tD)−∇ · q− Γ. (1)

In this, the convected time rate of change of internal

energy following the mean motion is equal to the rate

at which fluctuations are created by the working of the

stress t through the symmetric part D of the gradients

of the mean velocity, less the sum of the divergence of
the flux of fluctuation energy q and the rate of colli-

sional dissipation Γ .

Numerical simulations of homogeneous, steady shearing

flows of granular materials [21] indicate that the pres-
ence of friction does have an influence on the tractions

necessary to maintain a shearing flow at a given solids

fraction. Here, we take the frictional interactions into

account only through their influence on the energy of

the fluctuations in the translational velocity [9].

2.2 Constitutive relations

To incorporate the additional dissipation due to fric-

tion, we introduce an effective coefficient of restitution,

ε, in the limit of large friction. In this case, Jenkins and

Berzi [14] indicate that ε is given in terms of the nor-

mal and tangential coefficients of restitution e and β in
sticking collisions [24] by

ε2 ≡ e2 − 4
1 + β

7
+ 4

(

1 + β

7

)2 [

1 +
5(1 + β)

9− 5β

]

. (2)

Here, we use an effective coefficient of restitution of

0.60, which corresponds to values of the normal and

tangential coefficients of 0.92 and 0.25, which are close

to values measured by Foerster, et al. [24] for glass

spheres.

For solid volume fractions ν ≡ nπd3/6 less than, roughly,

0.49, we employ the constitutive relations for shearing

flows that result from the kinetic theory of Garzo and
Dufty [3] for identical, frictionless, inelastic spheres, but

do not incorporate the small terms introduced by their

function c∗ of the coefficient of restitution. The mag-

nitude of c∗ is about 0.04 and terms proportional to
c∗ are typically multiplied by a small numerical coef-

ficient. If the x coordinate is taken in the flow direc-

tion, the y coordinate in the direction of shear, and

the z coordinate orthogonal to these, the pressure p ≡

− (txx + tyy + tzz) /3, the shear stress S ≡ txy, the en-
ergy flux Q ≡ qy, and the rate of collisional dissipation

Γ are given by

p = 4ρGFT, (3)

where G ≡ ν(1− ν/2)/(1− ν)3 is the product of ν and

the expression for the volume fraction dependence of
the radial distribution function at contact determined

by Carnahan and Starling [23] in numerical simulations

at moderate volume fractions and F = (1 + ε)/2 +

1/(4G);

S = µu′, (4)

where the prime denotes a derivative with respect to y

and

µ = 2Jpd/
(

5π1/2FT 1/2
)

, (5)

with

J =
1 + ε

2
+

π

32G2

[5 + 2(1 + ε)(3ε− 1)G]

24− 6(1− ε)2 − 5(1−ε2)

× [5 + 4(1 + ε)G] ; (6)

Q = −κT ′ − ην′, (7)

where

κ = Mpd/
(

π1/2FT 1/2
)

, (8)

with

M =
1 + ε

2
+

9π

144

5 + 3G(1 + ε)
2
(2ε− 1)

(1 + ε) [16− 7 (1− ε)]G2

× [5 + 6G (1 + ε)] , (9)

and

η =
25π1/2

128

pT 1/2

4FG

d

ν2
N, (10)

with

N =
96

25

1− ε

1 + ε

ν

G

5 + 6G(1 + ε)

16 + 3(1− ε)

×

{

20ν (lnG)ν
[

5 + 3G(1 + ε)2(2ε− 1)
]

48− 21(1− ε)

−G [1 + ν (lnG)ν ] (1 + ε)ε

}

, (11)
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in which the subscript indicates a derivative with re-

spect to ν; and

Γ =
12

π1/2

ρG

d
(1− ε2)T 3/2. (12)

For ν > 0.49, we adopt the radial distribution function

for dense aggregates of colliding spheres proposed by

Torquato [26], G = 0.63ν/(0.60− ν), where the singu-
lar value of ν for the dissipative interaction is taken to

be 0.60 [10] and the rate of collisional dissipation (12)

is modified by replacing d with a length L that is de-

termined in a balance between the orienting influence

of the flow and the randomizing influence of collisions
[13]:

L

d
=

1

2
cG1/3 du′

T 1/2
, (13)

where c is a parameter of order one.
The algebraic part of the balance of energy, Su′−Γ = 0

may be solved for du′/T 1/2. When this is employed in

(13), it gives

L

d
=

1

2

[

15

J

(

1− ε2
)

c2
]1/3

G2/9, (14)

where, for dense flows, terms proportional to G−1 and

G−2 in (6) may be ignored and J = (1+ε)/2+(π/4)(3ε−

1)
(

1 + ε2
)

/ [24− (1 − ε)(11− ε)]. When the constitu-

tive relations (4) and (5) are used to express du′/T 1/2

in terms of the stress ratio S/p and this is employed

with the dense limits of J and F = (1 + ε)/2 in the

algebraic energy balance,

L

d
=

24

5π
J
1− ε

1 + ε

( p

S

)2

(15)

This, used with (14) gives

G =

[

192

25π3/2

J2

c

1− ε

(1 + ε)2

( p

S

)3
]3

. (16)

Equation (14) determines L/d in terms of ν; (16) de-

termines ν in terms of S/p or, equivalently, in terms of

the tangent of the angle of inclination.

3 Boundary-Value Problem

We next use the balance laws and constitutive relations

outlined above to phrase and solve a one-dimensional

boundary-value problem for the steady, uniform flow
over a rigid, bumpy base inclined at an angle φ to the

horizontal between flat, vertical side walls. We consider

flows in two different chutes: one in which the walls are

separated by a distance W of 30 particle diameters, the
other in which the walls are separated by a distance of

1400 particle diameters. In both cases, we take the coef-

ficients of restitution of the wall, ew, to be 0.60 and the

coefficient of sliding friction, µw, to be 0.15. We assume

that the flow is uniform across the chute and treat the

frictional resistance and collisional dissipation of the

side walls in an average way by introducing a constant

force through the thickness of magnitude 2µwp/W op-
posing the flow and a constant rate of dissipation of

(2/π)
1/2

(1− e2w)pT
1/2/ (LW ). We compare the predic-

tions of the solutions to the boundary-value problems

with the results of physical experiments of Johnson, et
al. [12] and Pouliquen [25].

3.1 Differential equations

The balances of momentum parallel and perpendicular
to the flow are

S′ = −ρg sinφ+ 2µwp/W, (17)

where g is the gravitational acceleration and

u′ = S/µ, (18)

with µ given by (5) and (6); and

p′ = −ρg cosφ, (19)

where, upon carrying out the differentiation and using

(7), this first order equation for p can be employed as
a first order equation for ν:

[T (4ρGF )ν − 4ρGFη/κ] ν′ = 4ρGFQ/κ− ρg cosφ,(20)

in which η is given by (10) and (11) and κ is given by

(8) and (9). The energy balance is

Q′ = Su′ − Γ − (2/π)
1/2

(1− e2w)pT
1/2/ (LW ) , (21)

where Γ is given by (12) with d replaced L from (14)

when L/d > 1; and

T ′ = − (Q+ ην′) /κ, (22)

where ν′ is given in (20). The specification of the mass

hold-up per unit area,M , is implemented as a boundary
condition to a first order differential equation for the

partial mass hold-up, I(y) ≡
∫ y

0
ρ(ξ)dξ:

I ′ = ρ (23)

with I(0) = 0 and I(H) = M .

3.2 Boundary conditions

We assume that the bottom boundary consists of a flat

wall to which spheres identical to those in the flow have

been attached and use the boundary conditions on the
slip velocity and energy flux at a bumpy, nearly elastic,

frictionless boundary derived by Richman [27] with the

effective coefficient of restitution.
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The balance of momentum tangent to the boundary

provides

u

T 1/2
=

(π

2

)1/2

f
S

p
, (24)

where

f =
3

25/2J

23/2J − 5F (1 +B)sin2θ

2(1− cos θ)/sin2θ − cos θ
+

5F

21/2J
, (25)

with B = [1 + 5/(8G)]π/(21/212), and θ, the bumpi-

ness, measures the average maximum penetration of a
flow sphere between boundary spheres. When the di-

ameter of the flow spheres is the same as that of the

boundary spheres, the bumpiness is given in terms of

d and the average separation s between the edges of

the boundary spheres by sin θ = (d + s)/(2d). In what
follows, we employ values of θ of π/5 and π/3 that corre-

spond to relatively smooth and relatively rough bound-

aries, respectively.

The balance of energy at the bumpy boundary is [27]

Su = Q+D, (26)

where D = (2/π)
1/2

pT 1/2h(1 − ε), with h = 2(1 −
cos θ)/ sin 2θ.

We take the top of the flow to be the point where the

free flight trajectory of a particle ejected normal to the

flow with velocity T 1/2 first equals the mean free dis-

tance between collisions. At this point [28],

p = ρT = 0.039ρgd/ν. (27)

The flow momentum and energy flux there, associated

with the acceleration of the particle under gravity [29],
are

S = p tanφ (28)

and

Q = −pT 1/2tan2φ. (29)

Above the top of the flow is a rare gas of spheres in

ballistic trajectories that we neglect for the sake of sim-

plicity.

4 Algebraic Theory

The numerical simulations of Mitarai & Nakanishi [30]

show that the profile of the granular temperature T in

a dense inclined flow may be determined using the al-
gebraic balance between production and dissipation of

fluctuation energy. Jenkins [13] confirmed this in the

context of his extension of the kinetic theory that in-

troduced the additional length scale into the rate of
collisional dissipation.

In this section, we employ the constitutive theory out-

lined above and the algebraic balance of the energy with

the additional length scale to study flows over bumpy

planes confined between parallel, vertical walls. As in

the solution of the boundary-value problem, we take

sliding friction of the side walls into account in an ap-

proximate way by including the average frictional re-
sistance of the side walls in a one-dimensional analysis

through the thickness of the flow . At the base, we as-

sume that the flow slips relative to the rigid, bumpy

boundary. The flow is taken to be so dense that the
extension of the kinetic theory that involves the addi-

tional length scale applies throughout its depth.

From (14) and (16), L/d is greater than one throughout

the flow if

tan2 φ ≤
24J(1− ε)

5π(1 + ε)
(30)

This limits the angles of inclination for which the anal-

ysis applies. For greater angles of inclination, there is

a more dilute region above the dense region that is de-

scribed by the classical kinetic theory. Here we assume
that the upper surface is free and show only these re-

sults.

The mass-hold-up M and the approximately constant

average mass density ρ are assumed to be known, so

the thickness H , of the flow, given as their ratio, is also
known. In a steady, fully-developed, inclined flow in a

dense layer of thickness H , the pressure p is given to a

good approximation by

p = ρg(H − y) cosφ. (31)

Denoting quantities evaluated at the base with the sub-
script 0, p0 = ρgH cosφ. With p = 2ρ(1 + ε)GT ,

T =
g(H − y)

2(1 + ε)G
, (32)

and T0 = gH/ [2(1 + ε)G0].

In the dense flow, (17) and (19) may be integrated to

S

p
= tanφ− µw

p

ρgW cosφ
, (33)

and, with α defined as the stress ratio S0/p0 at the base,

α = tanφ − µwH/W . With this, the average value of

S/p is (tan φ + α)/2. In order to obtain an analytical
expression for the average velocity in the dense flow,

we evaluate G given by (16) at this average value and

denote this value by G. Then (17) and (18) yield

u = u0 +
2

3

[

1−

(

p

p0

)3/2
]

Ap
3/2
0

tanφ

ρ3/2 (gd cosφ)

−
2

5
A

[

1−

(

p

p0

)5/2
]

µwd

W cosφ

p
5/2
0

ρ5/2 (gd cosφ)
2
, (34)

where A2 ≡ 25π(1 + ε)/
(

32J2G cos2 φ
)

, and u0 = fα

(π/2)1/2T
1/2
0

.
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The integral of u over the thickness of the flow gives

the depth-averaged velocity, U , as

U = u0+
2

35

Ap
3/2
0

tanφ

ρ3/2gd cosφ

(

7− 5
p0

ρg cosφ

µw

W sinφ

)

.(35)

The product of the depth-averaged velocity, the flow

thickness, and the constant mass density is the mass

flow rate.

5 Results

We employ the two-point Matlab boundary-value prob-

lem solver ’bvp4c’ to determine solutions for a range of

values of the the mass hold-up at a given angle of in-
clination in chutes of two different widths and, in the

wider chute, at two different values of the bumpiness

of the base. In addition, we use the algebraic theory

to predict the relationship between the mass flow rate

and the mass hold-up. In what follows, all quantities
are given in dimensionless form, using the particle den-

sity, ρ/ν, the particle diameter, d, and the gravitational

acceleration, g.

The results are shown in Fig. 1 together with data from
the experiments of Pouliquen [25]. For large enough val-

ues of mass hold-up, the algebraic solutions can repro-

duce both the experimental data and the results of the

numerical solutions. At the smaller values of the mass

hold-up, the relation between the mass flow rate and
the mass hold-up is smooth, but not monotonic. As a

consequence, over a range of mass flow rates, as many

as three solutions can exist [20]. This is in agreement

with physical experiments on inclined flows of particles
over a flat, frictional base [12]. Johnson, et al. [12] ob-

served that, for a certain range of mass flow rates, both

dilute and dense flows were possible, depending on the

upstream conditions.

We find that classical kinetic theory applies through-
out the dilute flows and extended kinetic theory ap-

plies throughout the dense flows; an intermediate solu-

tion involves a dense core and dilute regions at its top

and bottom. The three numerical solutions for such a
mass flow rate are shown in Fig. 2. As expected, the

algebraic solutions agree with the numerical solutions

(Fig. 1) only for thick, dense flows; in these, the dense

core occupies almost all of the flow. In thin flows, the

boundaries create regions in which the transport of en-
ergy can not be neglected.

Our numerical solutions agree with the experimental

observations of Johnson, et al. [12] in two other re-

spects. First, the jumps that they observe between the
dilute and the dense regimes can be explained by the

presence of local maxima in the curves of Fig. 1. Upon

increasing the mass flow rate, flows follow the dilute
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Fig. 1 Numerical solutions: open squares, W = 1400, θ =
π/5; plus signs, W = 1400, θ = π/3; open circles, W = 30,
θ = π/5. Algebraic solutions: solid line, W = 1400, θ = π/3;
dashed line, W = 30, θ = π/5. Pouliquen’s experiments: filled
squares. All solutions for φ = 26o, ε = ew = 0.60, µw = 0.15,
and c = 0.50.

branch of the numerical solutions up to a point where
dilute solutions are no longer possible, causing an abrupt

transition to the dense branch. Second, in presence of

side walls, the dense branch tends asymptotically to a

limiting value of the mass flow rate.

The hysteresis observed in the experiments of Johnson,
et al. [12] provides an indication that the intermediate

branch is unstable. However, the instability analysis of

Woodhouse and Hogg [31] for unconfined, inclined flow

indicates that the region of linear stability is located
on the intermediate branch and exists only for a limited

range of inclination angles. In the physical experiments,

the instability of the outer branches may be suppressed

by the presence of the walls, but the question of the

stability of the confined flows derserves more study.

6 Conclusions

We have applied classical, extended, and algebraic ki-

netic theories for inelastic, frictional spheres to regimes
of uniform, steady, inclined flows over a rigid, bumpy

bed between flat, frictional side walls. The predicted

average values of the flow variables and the predicted

profiles of volume fraction and average velocity exhibit

the same features as those measured in physical exper-
iments.
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